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Abstract-The objective of this paper is the analysis of the dynamics of structural systems with
randomly varying parameters. The formulation and analysis are based on the theory of random
integral equations. The general analysis (including error estimation) is applied to the problems of
harmonic vibration of (i) a beam with randomly varying density and (ii) a uniform beam resting on
a randomly inhomogeneous Winkler foundation. For these applications, the analytical formulae
for the mean and correlation function of the response are illustrated numerically and graphically.

I. INTRODUCTION

In traditional analysis of structural systems (e.g. beams, plates, shells, etc.), it is usually
assumed that the material and geometrical properties of the system in question are constant.
Although such an assumption has long been a basis for numerous practical solutions, it is
evident that some amount ofrandomness in characterization of the system properties (e.g.
mass density, cross section, bending rigidity) is unavoidable. In general, models for the
behavior of structural elements should take into account uncertainty and inhomogeneity
in their mechanical properties. Such models become especially important now when modern
engineering structures are becoming increasingly complex and contain more technologically
advanced materials (e.g. composites).

As a result, an increasing amount of attention has been devoted to various structural
analysis problems in which spatial randomness occurs in the system properties. Apparently,
the first static problems of this kind were connected with geotechnical applications, e.g.
beams resting on statistically inhomogeneous Winkler foundation (Bolotin, 1965, 1971),
and were treated by perturbation techniques. Subsequently, Monte Carlo simulation (Astil
et al., 1972), Green's function approaches (Bucher and Shinozuka, 1988; Kardara et al.,
1989) and the stochastic finite element method (Vanmarke and Grigoriu, 1983; Deodatis
and Shinozuka 1988; Ghanem and Spanos 1991 ; and the references therein) were proposed.

Vibration analysis ofstatistically inhomogeneous structural systems was initiated many
years ago-mostly through the use of perturbation techniques [cf., Boyce (1962, 1967);
Collins and Thomson, (1969), Sobczyk (1970,1972)]. The dynamic problems for the systems
considered were mainly focused on characterization of random eigenvalues [in this context,
see for example the book of vom Scheidt and Purkert (1983) and the recent paper by
Iyengar and Manohar (1989)]. Dynamic behavior of a long (infinite) beam resting on a
randomly varying foundation has recently been treated by the perturbation and finite
element techniques [cf. Fryba et al. (1993)]. It is worth adding that spatial randomness has
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been previously treated in other fields; for example in the analysis of wave propagation
[cf., Sobczyk (1985)).

Although the literature devoted to problems of spatial variability in structural systems
is quite extensive, it mainly deals with perturbation and finite element techniques. However,
it turns out that a certain class of dynamic problems with spatially random parameters
(especially, the dynamic analysis of beams with random properties) can effectively and
rigorously be analyzed via a random integral equation formulation. Such an approach
constitutes a clear analytical approximate method with defined range of applicability and
with specific error estimates that depend explicitly on the intensity of the spatial randomness.
The objective of this paper is to provide an analysis along these lines.

This paper deals with the analysis of the dynamics of structural elements with random
properties based on the theory of random integral equations [cf., Tsokos and Padgett
(1974); Szynal and Wedrychowicz (1985, 1988)). First, the necessary mathematical theory,
including the successive approximations of the solution and the error estimation, is briefly
presented. Then, the analysis of the harmonic vibration of beams with spatial randomness
is performed, and graphical and numerical results are presented.

2. GENERAL FORMULATION

The dynamics of a wide class of elastic structural systems with spatially distributed
randomness are governed by the equations of form

(I)

where r denotes the spatial variable, in general, r = (x,y,z); (r,ff,p) is the basic prob­
ability space, and yE r represents an elementary event; for each yE r eqn (I) is a possible
realization of the process in question. The random properties of the system are jointly
characterized by the random field A(r, y); q(r, t) is an external excitation (which can be
considered deterministic or random), w = w(r, t) is the unknown displacement field, Lr is a
deterministic differential operator with respect to spatial variables. Equation (I) has to be
implemented by the appropriate initial and boundary conditions, which we shall represent
symbolically as

a
w(r, to) = wo(r), at w(r, to) = WI (r), Hw(r, t) = 0, rE S (2)

where S denotes the boundary of the structural element, and H is an appropriate operator
acting on w(r, t) when rES.

In the case when the system considered is an elastic plate or elastic beam, the random
field A(r, y) has the following form:

A(r, y) = {p(r)h(r)D -1 }(y) (3)

where per) denotes the density of the material, her) is the cross sectional area, and D is the
bending rigidity (the product of the mass moment of inertia I and the Young's modulus
E). For the method presented herein, D should be a deterministic constant or a random
variable. For real structural elements

p > 0, h > 0, D > 0. (4)

Let us consider the harmonic vibrations when the excitation and the response are
periodic in time. If, for instance, q(r, t) = Q(r) sinpt and w(r, t) = Y(r) sinpt, then equation
(I) takes the form
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(5)

with the boundary conditions (2). Here, D~ 1 is also included as a multiplicative constant
in Q(r). The above equation can be rewritten as

(6)

and represented (along with the boundary conditions) in the form of the random integral
equation

Y(r) = ((J(r) + Is K(r, r', y) Y(r') dr'

where B is a domain occupied by the structural element,

((J(r) = Is Q(r')G(r, r') dr'

K(r, r', y) = p2 A(r', y)G(r, r')

(7)

(8)

(9)

and G(r, r') is the Green's function associated with operator Lr and specified boundary
conditions. The Green's function G(r, r') determines the static displacement of the element
at point r due to the unit force acting at point r'. For many structural elements G(r, r') can
be determined analytically.

Equations (7)-(9) constitute the random integral equation formulation ofthe problem.
We wish to determine the unknown random field Y(r); as formulae (8) and (9) indicate,
the inhomogeneous term ((J(r) and random kernel K(r, r', y) are given.

2.1. Remarks
In some situations, especially when the spatial randomness is characterized by a

random field with constant mean value rnA, one may modify the analysis in the following
way. Let

A(r, y) = rnA + A'(r, y) (10)

where A'(r, y) characterizes the random fluctuations of the process about rnA- Introducing
the new operator

(11)

equation (5) then becomes

(12)

where the mean of A'(r, y) is zero. Therefore, the associated random integral equation takes
the form of (7), whereas in formulae (8) and (9), G(r, r') is replaced by the Green's function
corresponding to the operator L; given by (11); and A(r', y) in (9) is replaced by A'(r', y).
Of course, in all subsequent formulae, rnA should be replaced by rnA' = O. It is seen that in
the modification indicated here, the effect of the mean value of the random inhomogeneity
is incorporated into the Green's function (which is associated with operator (11)). In this
way, the Green's function is a little more complex, but the formulae for the moment
response includes fewer terms. In addition, the applicability range of the method is sig­
nificantly expanded.
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It is clear that the formulation of the problem presented above, both in its standard
and modified form, includes as a special case, harmonic vibration of an elastic plate and
beam resting on statistically inhomogeneous Winkler foundation. In this case, the random
function A(r, y) is the difference A(r, y) = Ab(r, y) - Ar(r, y) where Ab(r, y) characterizes the
properties of the structural element in question and Ar(r, y) describes the properties of the
foundation.

3. ANALYSIS OF RANDOM INTEGRAL EQUATION

To formulate the basic statements on the existence and uniqueness of the solution of
eqn (7) and its successive approximations we shall introduce first the necessary definitions
and notations.

Let L2(r,~,P) denote, as usual, the space of square-integrable (with respect to P)
random variables X(y) with the norm

(13)

Let the kernel K(r, r', y) be a measurable (e.g. continuous) function which maps the domain
B x B into L2(r,~,P). Random function Y(r, y) is a solution of eqn (7) if, for each fixed
rE B, Y(r, y) EL2(r,~, P) and satisfies eqn (7) almost surely (with respect to P).

Let C(B, L 2(r, ~,P)), that is, C denotes the space of all continuous and bounded
functions on B with values in L2(r,~,P) with the topology defined by the norm':

IIYIl =supIIY(r,y)IIL2'
rEB

Such a definition of the norm in C implies that if Y(r, y) E C then for each rEB

IIK(r,r',y)Y(r,y)IIL2 ::::; IIK(r,r',Y)IIL
2

1I Y(r,y)IIL2'

The basic statement (theorem) concerning eqn (7) is as follows: if
(i)

'1 = sup[f IIK(r,r',Y)IIL2dr'] < 1
reB B

(ii)

sup 11<p(r,Y)IIL, < 00
reB -

(14)

(15)

(16)

(17)

then there exists one and only one solution Y(r, y) E C of eqn (7).
The proof makes use of relations (15)-(17) and the Banach fixed point principle [cf.,

Tsokos and Padgett, (1974); Szynal and Wedrychowicz, (1988)]. The sequence of the
successive approximations:

Yo(r,y) = <p(r,y),

Yn+ 1(r,y) = <p(r,y)+tK(r,r',y)Yn(r',y) dr, n = 0, 1,2, ...

converges to the solution of eqn (7) in space C(B, L 2(r, ~, P)). Indeed, for rEB

(18)
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II Yn+ I (r, y) - Yn(r, y) II = sup II Yn+ I (r, y) - Yn(r, y) IlL,
r

= S1!P II Is K(r, r/, y) Yn(r
/
) dr' - Is K(r, r

/
, y) Yn- I (r

/
, y) dr/L

~ S1!P Is IIK(r,r/,y)[Yn(r/)- Yn-1(r/)11IL,dr'

~ S1!P {II Yn(r) - Yn- 1 (r) II Is IIK(r, r
/
, y) IIL2 dr

/
}

~ YJ II Yn(r) - Yn- 1(r) II·

Repeating the above estimation n - 1 times, we obtain

II Yn+ I (r, y) - Yn(r, y) II ~ YJn II Y1 (r, y) - Yo(r, y) II·

It is clear that (with use of the triangle inequality)

1655

(19)

(20)

II Yn+k - YnII ~ II Yn+k - Yn+k - 1 II + II Yn+k - 1 - YnII

~ II Yn+k - Yn+k - 1 II + II Yn+k - 1 - Yn+k - 2 11 + ... + II Yn+2 - Yn+ I II + II Yn+1- Y" II

I

by virtue of (20)

II Yn+k - Ynll ~ YJnll Yj - Yo II +YJn+ III Y1 - Yo II +... +YJn+k
-

2 11 Y1- Yo II

+ YJn+k
-

1 II Y1- Yo II = II YI - Yo II (1( +1]"+ I + ... +1]n+k- I).

Since 1] is assumed to be less than one, we have

Since k is an arbitrary natural number, the sequence {Yn(r, y)} is a Cauchy sequence in
space C, so it converges to the element Y(r, y) EC, and

YJn YJn+ 1

IIY(r,y)-Yn(r,y)11 ~-1-IIY1-Yoll ~-1-llcpll·
-YJ -YJ

(21)

Inequality (21) gives the error of approximation of solution Y(r, y) by Yn(r, y) for each
rEB. Since for each rEB the values of Y(r,y) belong to L 2(r,ff,P), this means that we
have, for each rEB, a bound

(22)

3.1. Remark
In addition to the continuous approximation of the solution Y(r, y) via successive

approximations it may be useful (in dealing with applications) to consider the discrete
representation (approximation) ofrandom integral equation (6). For instance, if the prob­
lem is spatially one-dimensional (r = XE [[0, I]]), we consider the discrete points:
o= Xo < X I < ... , and Xi - X i_ I = r, i = 1, 2, ... , and Xn = Xo +nr = nr. For fixed x = Xm

the interval [0, I] is divided into n subintervals. As r -+ 0, then for fixed x such that
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x = X n = nr we must have n --+ 00. The discrete version of integral equation (6) is [cf.,
Tsokos and Padgett, (1974); Sobczyk, (1991)]

n

Yn = q>(xn)+ L Wn,iKn,i(Y) Yi == UYi
i~O

(23)

where Kn,i(Y) = K(xm ei' V), Yi = Y(x j , V), and Wn,i are appropriate weights (e.g. such as
in the composite trapezoidal rule). In this case, the sequence of successive (algebraic)
approximations Yn(y) of Yn(y) for each x = Xn takes the form

Y~(y) = q>(xn,Y),

y~k+l)(y) = Unk)(y), k = 0, 1, ... (24)

It has been proven that the above sequence ofapproximations converges to the true solution
Y(x, y) at x = X n as k --+ 00.

4. APPLICAnONS

4.1. Elastic beam with random mass density
Let us consider vibrations of a finite elastic beam with randomly varying density; the

bending rigidity is assumed here to be constant. In this case the basic differential equation
(1) reduces to the following one:

where q(x, t) includes factor D- 1
, and according to (3),

A(x,Y) = hD-1p(x,y).

(25)

(26)

It should be noted that D can be treated as a random variable as well. Here, randomness
of D is accounted for by considering the right hand side of (25), and consequently q>(x), to
be random.

Of the various possible boundary conditions at the ends of the beam we take here
those corresponding to simply supported ends, that is

02 W
w(x, t)lx~o,l = 0, ox

2
(x, t)lx~o,l = 0, (27)

Therefore, the periodic (in time) vibrations are governed by the random integral equation
(7)

Y(x) = q>(x) +IK(x, e, y) YW de (28)

where q>(x) and K(x, e, y) are given by formulae (8) and (9) where r = x, r' = e, and
B = [0, I]. The Green's function G(x, e) accounting for boundary conditions (27) is known,
namely
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The first terms of the sequence of successive approximations take the form

Yo (x, y) = ip(x, y)

= I Q(~, y)G(x,~) d~,

Y, (x, y) = ip(x, y) + f~ K(x,~, y)ip(~, y) d~,

Y2(x,y) = ip(x,y) +I K(x'~l,Y)ip(~I,y)d~,

+I K(X'~2,y{L K(~2'~"Y)CP(~"Y)d~lJd~2'

1657

(29)

(30)

Let us assume that random function A(x, y) is determined by its mean and covariance
function:

<A(x, y» = mAx), (31)

In addition, we shall denote

It is clear that:

The mean values of the first approximations are as follows (we assume that ip(x, y) and
A(x, y) are independent).

mo(x) = <Yo(x,y» = <ip(x,y»

= f~ <Q(~,y»G(x,~)d~ = m<pW

ml(x) = <Y,(x,y»

= <ip(x,y»+I <K(x,~,Y»<ip(~,y»d~

= m<p(x) +p2 f~ mA~)m<p(~)G(x,~) d~

(33)

(34)
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m2(X) = <Y2(X,Y)

= m",(x)+p2I mA~I)m",(~I)G(X,~\)d~1

+p4 LLRA(~\l ~2)m'P(~\)G(x, ~2)G(~2' ~l) d~l d~2 (35)

In general, for k = 1, 2, ...

where

(37)

- r f A(k) vcJx)- Jk'" R A (~\'~2'"''~k)m'P(~k)G(X,~\)G(~\'~2)'''

x G(~k-\' ~k) d~ \ d~2 ... d~k (38)

and for k = I, 2, ...

R~)(~\l ~2'" ~k) = <A(~I> y)A(~2' y) ... A(~b y)

R~I) = <A(~, y) = mA(~)

The correlation functions of the successive approximations are as follows:

(39)

R O(Xl,X2) = 0

R\(X\,X2) = <Y1(xj,Y)Y\(X2,Y)

= <[cp(Xj,Y) +LK(Xj,~l,Y)CP(~j,y)d~d

x [CP(X2,Y)+LK(X2'~2,Y)CP(~2,y)d~2])

= <CP(XI> Y)CP(X2' y) +L<K(xj, ~\l y)<cp(~j,y)cp(x2,y)d~l

+L<K(X2'~2,Y)<CP(Xl,Y)CP(~2,y)d~2

+IL<K(xl> ~I> y)K(X2' ~2' y)<cp(~\, Y)CP(~2' y) d~l d~2

= R",(X\,X2)+p2 f~ mA~l)G(XI>~1)R'P(X2' ~l) d~\

+p2 LmA(~l)R'P(XI> ~\)G(X2' ~l) d~l

+ p4L1RA~ I> ~2)R'P(~ I> ~2)G(XI> ~ I )G(X2, ~2) d~ \ d~2 (40)
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R2(x"X2) = <Y2(X"Y)Y2(X2,Y)

= Rrp(X"X2)+p2 f: mA~dRrp(X2,~,)G(X,,~,)d~,
+p2 I: mA~dRrp(x" ~1)G(X2' ~d d~,

+p4 I: I: RA(~I'~2)Rrp(X2'~2)G(X"~I)G(~"~2)d~1 d~2

+p4 I: I: RA(~I'~2)Rrp(~"~2)G(X"~I)G(X2'~2)d~ld~2

+ p4 I: I: RA~ I, ~2)Rrp(x" ~2)G(X2' ~dG(~" ~2) d~ I d~2

+ p6 I: f: I: RA~ I, ~2' ~3)Rrp(~2'~3)G(XI' ~ I )G(~" ~2)G(X2' ~3) d~ I d~2 d~3

+ p6 f: I: I: RA~ I, ~2' ~3)Rrp(~1, ~3)G(Xl' ~ I)G(~2' ~3)G(X2' ~2) d~ I d~2 d~3

+p8 f: I:LI: RA~j, ~2' ~3' ~4)Rrp(~2' ~4)G(X" ~1)G(~j, ~z)G(X2' ~3)

(41)

Of course, the autocovariance function is given as

and

In the example considered, the quantity 1] occurring in the error estimate (21) is

1] = sup rl

IIK(x,~,Y)IIL2d~
XE[O,IIJo

=p2S~p I: IIG(x,~)A(~,Y)IIL2d~

= p2 s~p I: {L IG(x, ~)A(~, yW dP(y)f2 d~

= p2 s~p I: IG(x, ~)I {L IA(~, yW dP(y) f2 d~

Since the basic existence and uniqueness theorem requires 1] < I we obtain the following
condition for the applicability of the method
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(42)

where p is a frequency of the harmonic excitation of the beam, and

G= sup eIG(x, 01 d~,
XE[O.l] Jo

For the Green's function given by (29)

and

G = s~pLIG(x, ~)I d~ = 3~4'

Of course, the factor II qJ II occurring in the error estimate (21) is

IlqJll = sup IlqJ(x,y)lik
XE[O, 1] ~

In our case, when Q is assumed to be deterministic qJ is also deterministic and

In the particular case when Q(x) = Ql = const.

II ffJ II = Q, G.

Estimate (21) remains valid if

Ql = sup Q(x).
XE[O.1]

(43)

(44)

Particular case. To make further analysis effective, one should assume specific forms
of the random function A(x, y) and the right-hand side term Q(x), Such special forms can
characterize various situations of practical interest. Here, for illustrative purposes, we
assume that qJ(x) is deterministic and that A(x, y) is a product of a smooth deterministic
function and random variable, i.e.

A(x, y) = I(x)' Al (y). (45)

Such a form for A(x, y) may characterize the so-called "specimen-to-specimen" randomness
in deterministically varying mass density.

Based on eqn (45), we have
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Assuming, for simplicity, that q>(x) is deterministic, the mean values of the successive
approximations are:

mn(x) = <Yn(x, Y» = q>(x) +b, C j (x) +b2C2 (x) + ... +bncn(x)

mo(x) = <Yo (x, y» = q>(x), n = 1,2,... (46)

where

(47)

Cn(x) = <A7 (y)>Lf(~n)G(x, ~n)Lf(~n-' )G(~n, ~n-') , , ,Lf(~ j )G(~1,0

xL Q(~o)G(~" ~o) d~o d~, ' , , d~n_' d~n' (48)

The general formula for Rix" x 2 ), n = 1, 2, ' , , has the form

n

Rn(Xj, X2) = L (b i+j -b;bj )c;(Xj)cix 2)'
i,j= ,

where

(49)

Numerical example. To illustrate numerically the proposed approach, we assume speci­
fic values for the problem parameters. Here, A, is taken to be a log-normal random variable
with mean and coefficient of variation given by

These values correspond to a flexible beam whose nominal fundamental period is 0.5 Hz.
The nth moment of A, (y) required in (48) can then be written as

(50)

We take the spatial variation in the density of the beam to be of the form
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0.8

0.6

0.4

0.2

o+------t----+----+----t----~I
o 0.2 0.4 0.6 0.8 1.0

x

Fig. I. Deterministic variation in mass density,f(x).

f(
_ 20x4

- 37x3 + 20x2
- 3x+ 5

x) - 5 .

This function is shown graphically in Fig. 1. We further assume that the function Q(x) = 1.
Figure 2 shows the first four approximations for the mean amplitude of the harmonic

response of the beam for p = 1.25. The convergence is seen to be excellent. Similarly, Fig.
3 shows that the standard deviation of the amplitude converges rapidly to the solution.

The mean amplitude at the midpoint of the beam is shown in Fig. 4 as a function of
the frequency p. Notice that the solution convergence slows as the frequency increases. This
result is in agreement with the applicability range specified by (42). Finally, Figs 5 and 6
show the mean and standard deviation of the amplitude of the response as a function of
the coefficient of variation of A I (y).

4.2. Beam on a randomly varying Winkler foundation
As a second example, we consider a finite length beam with deterministic properties

resting on a randomly inhomogeneous elastic foundation. As indicated previously, A(x, y)
is taken as the difference A(x, y) = Ab-Ar(x, y), where Ab is a deterministic constant
characterizing the properties of the beam and Ar(x, y)D describes the random inhomo­
geneity of the foundation. In this case, the governing differential equation is

1.2

,-.,
N

I
0

0.8......
'--'

§
(I)

~

0.4

x

Fig. 2. Mean of amplitude, p = 1.25.
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2.0

,-..,

b 1.5.....
'--'

r::::
0
.~

';> 1.0v
0
]
"Cl

1a 0.5...
f/.l

x

Fig. 3. Standard deviation of the response amplitude, p = 1.25.

where q(x, t) includes factor D~ 1,
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(51)

(52)

and k(x, y) is the stiffness of the random foundation. The boundary conditions for the beam
are

a
2

w (x, t)1 = 0, a
3

w (x, t)1 . = o.
ax2 x~O,l ax3 x~O,1

(53)

For the case of harmonic vibration, we assume a solution of the form
w(x, t) = Y(x) sin pt to obtain

2.0

..-.- 1.8
'1o.....
'--'

1a
::E 1.6

1.4

o 0.5 1.0

P

1.5 2.0

Fig. 4. Mean response vs excitation frequency p at x = 0.5.
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m4 (0.5)

0.1 0.2 0.3

Coefficient of Variation, 0A

0.4 0.5

Fig. 5. Mean response vs mass density coefficient of variation at x = 0.5, P = \.25.

(54)

with the boundary conditions (53), where L = a4/8x4
• In this example, we assume that the

spatial randomness in the foundation properties can be characterized by a random field
with a constant mean value, i.e.

where A;'(x, y) characterizes the random fluctuation of the processes about its mean, mAr'

Introducing the new operator

the integral representation of Eq. (54), along with the boundary conditions, is:

1.2 0'3

,......,
<'"l

I
0-'-"
l::

0.80
.~

.;;
0

Cl
]

0.4"0
§.....
til

Coefficient of Variation, 0A

Fig. 6. Standard deviation of the response vs mass density coefficient of variation at x = 0.5,
p = 1.25.

(55)
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Y(X) = qJ(X) +rK(x,~, y) Y(~) d~

qJ(X) = rQ(~)G(x,~) d~

K(x,~, y) = - Ar(x, y)G(x,~)

1665

(56)

(57)

(58)

and G(x,~) is the Green's function associated with the operator L' and the specified
boundary conditions. For this operator, the Green's function can be readily determined via
a symbolic algebra computer program such as Maple (1991).

We assume that the random function Ar(x, y) has a covariance function RA,(Xh X2)'
Making use of the general ideas described in Sections 3 and 4.1 one can calculate the
approximations for the mean and covariances of the response.

Numerical results. To numerically illustrate the results, we assume that A b = 7[2 is a
deterministic constant, and Ar(x, y) is a log-normal random process with mean and cor­
relation function given by

The nth order correlation function for the process Af(x, y) can be shown to be

(
p P ;-1 )

= exp pmz+ 2" {rri- (p-I)mi} + i~2 j~l Rz(x;-x)

where

mAr
mz=ln-----

J(I + rr~r/m~r)

rri = In (I + rr~,Im~r)

The first few correlation functions for Ar(x, y) are then given by

(59)

(60)

(61)

(62)

(63)
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+RfJ/(xl , X2, X3) +RfJ/(X2' X3, x 4)}m~r{RAr(X1, X2) +RAr(x j , X3)

+RAf(XI, X4) +RA,(X2' X3) +R Af(X2' X4) +RA,(X3' X4)} - 3m~r' (65)

Let us also assume that

Q(X) = x(l-x).

Figures 7 and 8 present the first few approximations for the mean and the standard
deviation of the response, respectively, for the case when IX = 3 and p = 6.9. As can be seen,
the solutions converge quickly. The influence of the correlation parameter IX on the standard
deviation of the response is given in Fig. 9. As expected, the standard deviation of the
response decreases as IX increases.

In this example, the condition for the applicability of the method is thus

(66)

where p is a frequency of the harmonic excitation of the beam. Figure 10 shows a plot of
the allowable standard deviation (J A

f
vs frequency resulting from (66). Because the beam

considered is undamped, the response will be infinite at the natural frequencies of the
beam/foundation system. As demonstrated in Fig. 10, at these frequencies (e.g. '" 7 Hz and
19 Hz), the allowable standard deviation (JAr is zero.

5. CONCLUSIONS
.'

In this paper, we have shown that a significant class of problems associated with the
dynamics of structural systems with randomly varying parameters can be formulated and
effectively analyzed via random integral equations. The analysis presented indicates that,
within the applicable range, the sequence of successive approximations of the response is

3

2

-60~-~---:-L-_~_---J'-----'-_---l_--'----'-----'-_--J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

Fig. 7. Mean of response amplitude, p = 6.9.
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0.3 0.4 0.5

x
0.8 0.9

Fig. 8. Standard deviation of the response amplitude, p = 6.9.

convergent in the mean square sense. The formulae for the mean and covariance functions
of the response can be easily obtained and used for calculations. The error estimates depend
explicitly on the number of approximations and the intensity of the spatial randomness.

Application of the method to the dynamic analysis of (i) a beam with spatial ran­
domness in the mass density and (ii) a beam resting on a randomly varying Winkler
foundation shows, based on numerical calculations, that one only needs to take the first
few approximations to obtain highly accurate results for the mean and variance of the
response.

1.2

"'"""6-x
'-'
::: 0.8
0

';:l
«l
.~

Q.l
Q 0.6
]
"C
§.... 0.4tZl

0.2

0
0 2 3 4 5 6 7 8 9 10

Fig. 9. Standard deviation of the response amplitude vs the correlation parameter IX. p = 6.9.
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Fig. 10. Allowable standard deviation of the foundation inhomogeneity vs frequency.

The inherent features of the method (e.g. the explicit error estimate), as well as the
observations stemming from solving the problems of beam dynamics, clearly indicate the
advantages of random integral equations in the analysis of problems with spatial ran­
domness; in particular, in the analysis of beams with random properties. It is worth bearing
in mind these features in situations when various discretization schemes appear to be the
only possible solution method.
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